SEQUÊNCIA DIDÁTICA:

Estudo da poluição sonora por estudantes do ensino médio usando smartphone

Márcio Donizete Pereira

Orientação: Dr. Tersio Guilherme de Souza Cruz

Co-orientação: Dra. Fernanda Keila Marinho da Silva
SEQUÊNCIA DIDÁTICA:

Estudo da poluição sonora por estudantes do ensino médio usando smartphone

Márcio Donizete Pereira
Orientação: Dr. Tersio Guilherme de Souza Cruz
Co-orientação: Dra. Fernanda Keila Marinho da Silva

Agosto / 2017

Programa de Pós Graduação da Universidade Federal de São Carlos no Curso de Mestrado Profissional de Ensino de Física (MNPEF), como parte dos requisitos necessários à obtenção do título de Mestre em Ensino de Física.

UFSCar – Sorocaba
Apoio: CAPES
Sumário

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apresentação</td>
<td>05</td>
</tr>
<tr>
<td>1. Levantando o que os alunos já sabem!</td>
<td>17</td>
</tr>
<tr>
<td>1.1 Objetivos</td>
<td>18</td>
</tr>
<tr>
<td>1.2 Os conhecimentos prévios dos alunos</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Identificando os conhecimentos prévios dos alunos</td>
<td>19</td>
</tr>
<tr>
<td>2. A Física da Poluição Sonora</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Objetivos</td>
<td>22</td>
</tr>
<tr>
<td>2.2 A memorização também é útil</td>
<td>22</td>
</tr>
<tr>
<td>2.3 O que faremos</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Descrições do Experimento</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Ondas e tipos de ondas</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Frequências, comprimento e velocidade de uma onda</td>
<td>25</td>
</tr>
<tr>
<td>2.7 Intensidades Sonoras</td>
<td>26</td>
</tr>
<tr>
<td>2.8 Níveis relativos de Intensidades</td>
<td>27</td>
</tr>
<tr>
<td>2.9 Eco, Ruídos e Tubos Sonoros</td>
<td>28</td>
</tr>
<tr>
<td>2.10 Sugestões para a lista de exercícios</td>
<td>30</td>
</tr>
<tr>
<td>3. O funcionamento do aparelho auditivo</td>
<td>32</td>
</tr>
<tr>
<td>3.1 Objetivos</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Em busca da aprendizagem significativa</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Como faremos</td>
<td>33</td>
</tr>
<tr>
<td>3.4 Propostas de questões que podem ser utilizadas</td>
<td>34</td>
</tr>
<tr>
<td>4. Medidas de intensidade sonora através do aparelho de celular</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Objetivos</td>
<td>37</td>
</tr>
<tr>
<td>4.2 A aprendizagem significativa</td>
<td>37</td>
</tr>
<tr>
<td>Capítulo</td>
<td>Título</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>4.3</td>
<td>Como faremos</td>
</tr>
<tr>
<td>4.4</td>
<td>Sugestões de atividade final</td>
</tr>
<tr>
<td>4.5</td>
<td>Atividade Final</td>
</tr>
<tr>
<td></td>
<td>Bibliografia</td>
</tr>
<tr>
<td></td>
<td>Anexo 1: Roteiro e Tabelas da Atividade Final</td>
</tr>
</tbody>
</table>
Apresentação

Caro leitor e leitora,

Este material objetiva propiciar o estudo das ondas sonoras e as consequências da poluição sonora para a saúde humana a partir de uma sequência didática. Constitui-se como uma série de sugestões de abordagem do assunto junto a turmas do ensino médio.

Essa sequência didática foi produzida durante o exercício da prática docente e é parte dos resultados de uma dissertação de mestrado. Como docentes, sabemos que a maior parte das ações de sala de aula, tais como, metodologias de aula, resolução de exercícios, aulas práticas etc são variáveis, pois dependem da interação entre os estudantes e o professor. Justamente por isso, sempre que possível, apresentamos as ações em formato de sugestões e recomendações.

Acredita-se que o estudo do som pode propiciar meios para dimensionar o papel da informação para a vida, acompanhando as transformações sociais que resultaram do domínio tecnológico, do registro, reprodução e velocidade de transmissão de informações ao longo da história.

O som é definido como a propagação de uma frente de compressão mecânica ou onda longitudinal, se propagando tridimensionalmente pelo espaço e apenas em meios materiais que se encontram nos estados sólidos, líquidos e gasosos.

O ramo da Física que estuda a natureza desses fenômenos é chamado de Acústica. Em Acústica, estudamos os fenômenos sonoros, suas características e suas fontes.

Segundo alguns autores (Carvalho, 2008; Chrispino, 2009; Vianna, 2009) a abordagem da poluição sonora na escola de nível médio é importante para que os alunos possam entender os danos provocados por esse tipo de problema ambiental e passem a lidar adequadamente com ele.

O presente material didático é uma proposta de atividades para a compreensão de fenômenos acústicos e dos conceitos Físicos relacionados a esses fenômenos. Em quatro capítulos vamos passar pela utilização de vídeos em sala de aula, onde será possível discutir a problemática da poluição sonora, a utilização aplicativos de celular que permitirão realizar medidas da intensidade sonora e, por fim, a aplicação desta sequência.
A proposta da sequência didática utilizada por esse produto educacional pode ser verificada a seguir:

Planos de aula da sequência didática

Tabela 1: Plano de Aula utilizada na primeira atividade da sequencia didática

<table>
<thead>
<tr>
<th>Título da Aula</th>
<th>A Poluição Sonora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivos</td>
<td>Apresentar a poluição sonora como um problema que afeta a sociedade e é considerado pela ONU o terceiro maior problema ambiental do mundo.</td>
</tr>
<tr>
<td>Conteúdo</td>
<td>Poluição sonora, implicações para a sociedade e suas implicações para o indivíduo.</td>
</tr>
<tr>
<td>Metodologia</td>
<td>Foram utilizados vídeos do Youtube sobre a poluição sonora e os problemas que esse tipo de poluição pode provocar. Após o vídeo foi promovido um debate com os alunos acerca do tema e distribuídas algumas questões para reflexões individuais acerca do assunto.</td>
</tr>
<tr>
<td>Recursos Utilizados</td>
<td>Vídeos e questões para reflexão.</td>
</tr>
<tr>
<td>Avaliação</td>
<td>A avaliação foi feita através de questões para reflexão individual dos alunos sobre os tópicos abordados nos vídeos apresentados e questões que surgirem no debate e foram entregues na aula seguinte, após uma semana.</td>
</tr>
<tr>
<td>Titulo da Aula</td>
<td>Os Conceitos Físicos da Acústica</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Objetivos</td>
<td>Estudar os conceitos físicos envolvidos e necessários para entender a poluição sonora.</td>
</tr>
<tr>
<td>Conteúdo</td>
<td>Ondas, Tipos de ondas, frequência de uma onda, velocidade de propagação de uma onda, intensidade sonora, nível relativo de intensidade, eco, ruído e tubos sonoros.</td>
</tr>
<tr>
<td>Metodologia</td>
<td>Aula expositiva e uma demonstração experimental para mostrar que o som se propaga perturbando o meio. Após a aula e a demonstração experimental foi entregue uma lista de exercícios para resolução individual.</td>
</tr>
<tr>
<td>Recursos Utilizados</td>
<td>Aula expositiva, demonstração experimental e uma lista de exercícios.</td>
</tr>
<tr>
<td>Avaliação</td>
<td>A avaliação será feita através de uma lista de exercícios individuais sobre os tópicos abordados na aula.</td>
</tr>
<tr>
<td>Título da Aula</td>
<td>O Funcionamento do aparelho auditivo.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Objetivos</td>
<td>O Funcionamento do aparelho auditivo e as consequências causadas pela poluição sonora.</td>
</tr>
<tr>
<td>Conteúdo</td>
<td>Anatomia do aparelho auditivo e suas relações com os conceitos físicos.</td>
</tr>
<tr>
<td>Metodologia</td>
<td>Foi pedido para os alunos formarem grupos de aproximadamente cinco estudantes, e foi entregue uma pergunta diferente para cada grupo sobre o funcionamento do aparelho auditivo. Os alunos tiveram um tempo para pesquisar a resposta utilizando a internet através do seu aparelho celular e elaborar a resposta em uma folha de cartolina a fim de poderem apresentá-la em forma de seminário para os demais colegas da turma.</td>
</tr>
<tr>
<td>Recursos Utilizados</td>
<td>Folha de cartolina e aparelhos de celular com acesso a internet.</td>
</tr>
<tr>
<td>Avaliação</td>
<td>A avaliação foi feita através do envolvimento do grupo na elaboração da resposta e da apresentação em grupo do seminário.</td>
</tr>
</tbody>
</table>
Tabela 4: Plano de Aula utilizada na quarta atividade da sequencia didática

<table>
<thead>
<tr>
<th>Título da Aula</th>
<th>Medidas de intensidade sonora através do aparelho de celular.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivos</td>
<td>Realizar medidas de intensidade sonora utilizando um aplicativo específico (Sound Meter) que funciona como um decibelímetro em aparelhos celulares.</td>
</tr>
<tr>
<td>Conteúdo</td>
<td>Intensidade sonora, medidas através do aparelho celular, e análise de tabelas.</td>
</tr>
<tr>
<td>Metodologia</td>
<td>Foi pedido para os alunos baixarem um aplicativo específico (Sound Meter) que funciona como um decibelímetro em aparelhos de celular e após essa etapa foi entregue um roteiro que orientou toda a atividade desenvolvida.</td>
</tr>
<tr>
<td>Recursos Utilizados</td>
<td>Aparelho celular com o aplicativo (Sound meter) e uma lista que direcionou as atividades.</td>
</tr>
<tr>
<td>Avaliação</td>
<td>A avaliação será feita através de um roteiro que contém as atividades a serem realizadas e através de uma auto avaliação individual sobre os tópicos abordados durante todo o projeto.</td>
</tr>
</tbody>
</table>
Introdução

A motivação para o estudo da poluição sonora decorre dos problemas sociais e as demais implicações que esse tipo de poluição traz para a sociedade sendo considerada pela Organização das Nações Unidas (ONU) como sendo o terceiro pior problema mundial e pelo fato que muitos de nossos alunos estão em constante exposição aos problemas provocados pela poluição sonora.

Esse projeto propõe uma abordagem participativa para monitorar a poluição sonora através da participação do público em geral, por meio da utilização de um aplicativo. Esse aplicativo desenvolvido transforma os aparelhos celulares em sensores de ruído permitindo aos cidadãos medir a exposição do som em seu ambiente cotidiano. Os dados obtidos por cada um dos usuários podem ser enviados para uma central que utilizará esses dados para a construção de um mapa do ruído que poderá ser acessado por qualquer pessoa.

A poluição sonora é um problema ambiental provocado pelo ruído que é definido como o som capaz de provocar danos ao sistema auditivo. Os trabalhos de Penido, Azevedo e Souza (2011) e Musafir (2014) defendem que a poluição sonora pode ser definida como qualquer modificação das propriedades do meio ambiente causada por ruídos que possam causar dano auditivo para os frequentadores ou ocupantes de um determinado ambiente. Os mesmos definem ruído como sendo todo som indesejável, o que acentua o aspecto subjetivo do incômodo. Existe ainda uma definição para ruído baseada na sua composição em frequência: pode-se dizer que ruído é a ausência de periodicidade das ondas sonoras, ou seja, suas frequências e componentes não possuem relações harmônicas. Quando essa dissonância alcança o ouvido, gera uma sensação de desconforto.

Mattos e Bastos (2009) nos revelam que o conteúdo de acústica muitas vezes é deixado de lado pelo currículo escolar. E, quando é tratado, se limita a apresentar apenas curiosidades sobre velocidade do som, eco ou efeito Doppler, não contribuindo para uma educação efetiva sobre a área. No mesmo trabalho os autores realçam que os conhecimentos adquiridos na disciplina de física, quando bem trabalhados, podem contribuir para uma vida mais saudável do estudante.

Em outro trabalho, Santos, Barros e Amorim (2012), defendem que é de fundamental importância abordar a poluição sonora nas aulas de Física do ensino médio para que os alunos possam ser capazes de entender os danos provocados por esse tipo de poluição e consigam lidar adequadamente com esse tipo de problema.

A poluição sonora ocasiona danos à saúde das pessoas e, por esse motivo, é considerada um problema de saúde publica mundial. Segundo a Organização Mundial de Saúde (OMS) esse tipo de poluição é uma das formas mais graves de agressão ao ser humano e ao ambiente e é considerado como sendo o terceiro problema ambiental que mais afeta a sociedade perdendo apenas para a poluição do ar e para a poluição das águas\(^1\). A OMS considera que as intensidades sonoras ideais para a manutenção da saúde humana devem estar abaixo de 50 decibéis (dB). A partir de 50 decibéis, os problemas podem ocorrer em curto prazo ou levarem anos para serem notados. A perda de audição é o efeito mais frequente associado a qualquer tipo de som que ultrapasse os limites de tolerância.

Hungria (1995) nos diz que é importante ressaltar que o tratamento para os problemas causados pela exposição do indivíduo ao ambiente ruidoso é complexo e, muitas vezes, implica no afastamento do indivíduo desse ambiente.

O ruído pode trazer diversas implicações ao homem, como, lesão no tímpano; destruição das células sensoriais, zumbido, enjoo, torturas, mal estar; perda auditiva temporária, além de outras. Pode-se destacar que a poluição sonora também traz prejuízos econômicos (diminuição da produtividade, aumento na incidência de acidentes, indenizações) e sociais (perda de atenção, perda de concentração e estresse).

No ambiente escolar a poluição sonora prejudica a cognição, dificulta a concentração,

diminui a atenção visual e a coordenação motora, altera a inteligibilidade da fala, dificulta a aquisição de leitura e o desenvolvimento da linguagem, prejudica a atividade intelectual e interfere na memória.

Diante desse quadro é importante conscientizar os alunos a respeito das implicações provocadas pela poluição sonora para que estes se tornem críticos a respeito de toda a temática e das consequências que esta pode trazer para si e para a sociedade.

O estudo dos problemas ambientais é de grande relevância para a saúde da população e para o equilíbrio ecológico como um todo. Como discutido no item anterior, a poluição sonora, em particular, traz diversos prejuízos tanto para a saúde auditiva da população como também traz dificuldades de concentração provocando a queda no rendimento acadêmico ou profissional.

Atualmente no Brasil, as condições em que os trabalhadores estão sujeitas são fiscalizadas pelo Ministério do Trabalho. Para que essa fiscalização ocorra de maneira eficaz o mesmo editou as Normas Regulamentadoras (NRs), que são relativas à segurança e saúde do trabalho. São de “observância obrigatória pelas empresas privadas e públicas e pelos órgãos públicos da administração direta e indireta, bem como pelos órgãos dos Poderes Legislativo e Judiciário, que possuam empregados regidos pela Consolidação das Leis do Trabalho (CLT)”.

Essas normas estabelecem as mínimas condições que devem ser oferecidas aos trabalhadores pelos empregadores, e em uma dessas normas diz respeito à exposição ao ruído. Nela são indicados os valores máximos de tempo que um trabalhador pode estar submetido a determinado nível de ruído. Esses valores, segundo a NR-15 (Norma Regulamentadora do Ministério do Trabalho), encontram-se no anexo 1 deste texto.

Ainda segundo a legislação trabalhista, todas as pessoas que trabalham em um ambiente que possui elevados níveis de pressão sonora devem ser submetidas a exames audiométricos periódicos. O primeiro exame deve ser realizado no momento de sua admissão e este exame é considerado como referencial, pois os exames que serão realizados

Acesso em 15/05/2017
posteriormente devem ser comparados com esse para uma melhor avaliação das condições do estado da audição do trabalhador.

Costa (1988) avaliou a audição de 714 metalúrgicos com menos de dez anos de exposição ao ruído e encontrou uma porcentagem de aproximadamente 23% dos trabalhadores com Perda Auditiva Induzida por Ruído. Um trabalho semelhante foi realizado em metalúrgicas de Porto Alegre por Kwitko e Pezzi (1990) ao analisar 524 trabalhadores. Os pesquisadores constataram que aproximadamente 47% desses trabalhadores estavam com Perda Auditiva Induzida por Ruído.

Silva (2003) realizou uma pesquisa sobre o impacto da poluição sonora nos usuários do transporte coletivo de Goiânia. Nesse trabalho o autor constatou que os coletivos chegavam a emitir níveis de ruído em torno de 87 dB.

Fernandes e Marinho (2004) avaliaram a exposição ao ruído em que os motoristas e cobradores de coletivos urbanos da cidade de São Paulo estão sujeitos e constataram que, para veículos com motor dianteiro, o ruído ultrapassava os limites previstos na legislação trabalhista, que é de 85 dB para trabalhadores com jornada de 8 horas por dia.

Em um estudo realizado no Distrito Federal por Ribeiro e Garavelli (2004) foram encontrados 86 dB para os ônibus que integram o sistema de transporte coletivo. Em outro trabalho, realizado em setembro de 2006 pelos mesmos pesquisadores, destacou-se que um motor em boas condições reduz consideravelmente os níveis de ruído no interior dos ônibus de transporte coletivo.

Guedes (2005) realizou um estudo no bairro de jardins em Aracaju (SE) e constatou que as características físicas da forma urbana como a densidade construtiva, a existência de áreas livres entre outras características influenciam na propagação do som, determinando o ambiente sonoro de uma determinada região.

Suriano, Souza e Silva (2015) selecionaram para o seu estudo uma fração territorial localizada na cidade de São Carlos que engloba três corredores de trâfego relevante para a cidade (Av. São Carlos, Av. Dr Carlos Botelho e R. XV de Novembro). Nesse estudo foi caracterizado e contabilizado o fluxo de trâfego e a composição da frota (veículos leves e pesados). A coleta dos dados foi realizada em horários considerados como o de maior fluxo de veículos (das 7h00 às 8h00, no horário diurno e das 17h30 às 18h30, fim da tarde). Para o
levantamento do nível de ruído foi utilizado o equipamento Analyser 2270-L. Com base na norma NBR 10.151\(^3\), os limites para zonas urbanas de uso misto com vocação comercial e administrativa não devem exceder ao nível de 60 dB no período diurno e 55 dB no período noturno.

Os resultados encontrados por Suriano, Souza e Silva (2015) permitiram a construção de um mapa do ruído, possibilitando evidenciar as quadras que não comportam a intensificação do fluxo de veículos sob o ponto de vista do ruído. Os autores relatam que no Brasil existe uma carência de informações sobre a poluição sonora e os malefícios causados pela exposição da população. Os mesmos demonstraram que a área estudada apresentam valores elevados de níveis sonoros, estando acima dos limites estabelecidos pelas normas vigentes. O estudo defende que a classificação de quadras torna-se uma ferramenta para a educação ambiental e conscientização do problema provocado pela poluição sonora pela comunidade.

Em outro trabalho realizado por Pinto e Costa (2005) os autores propõem a criação de um programa computacional para simular o funcionamento de um cruzamento regulado por sinais luminosos. Entre os objetivos desse trabalho estão um melhor desempenho do tráfego de automóveis e a introdução de outros indicadores de desempenho, como o nível de ruído e o consumo de combustível além do custo de operação.

Em outro estudo, realizado no parque Jardim Botânico de Curitiba, Zannin e Szeremetta (2003) efetuaram medidas do nível sonoro equivalente em 21 pontos espalhados dentro do parque. Essas medidas foram realizadas nas pistas por onde os frequentadores do local circulam entre as 18 horas e 19 horas, pois é o horário que possui o tráfego de veículos mais intenso nas proximidades do parque. Nesse estudo foi constatado que aproximadamente 48% dos pontos onde foram realizadas as medidas apresentam níveis sonoros acima de 65 dB. Esse valor é considerado pela medicina preventiva como o nível máximo que um cidadão pode se expor sem riscos à saúde. Esse trabalho também revelou que aproximadamente 91% dos pontos avaliados não satisfazem a Lei Municipal (Curitiba, 2003). Para mais informações, consulte a referência abaixo:

\(^3\) Disponível em: http://www.semace.ce.gov.br/wp-content/uploads/2012/01/Avalia%C3%A7%C3%A3o+do+Ru%C3%ADdo+em+%C3%81reas+Habitadas.pdf Acesso em 10/03/2017
1995) de número 8583 que fixa o limite de 55 dB como nível máximo de emissões sonoras em áreas verdes.

Considerando os dados apresentados pelos diferentes autores, é premente um trabalho em sala de aula que destaque os problemas da poluição sonora que envolve, em geral, os grandes centros urbanos. Acredita-se que o ensino de física pode ser um canal bastante interessante para um trabalho que problematize esse assunto, na medida em que é essa área de conhecimento que aborda conteúdos que podem explicar sistematicamente fenômenos relacionados ao tema.

Conetta (2014) e colaboradores realizaram um levantamento acústico das escolas secundárias da Inglaterra para identificar as dificuldades causadas pelo ruído e a sua correlação com as características físicas dos espaços analisados. Segundo os autores nos últimos 15 anos, vários países introduziram orientações de design acústico para as escolas, no entanto, muitas escolas continuam a fornecer um ambiente acústico que não é ideal para o processo de ensino e aprendizagem, pois os níveis de ruído de fundo e / ou reverberação são muitas vezes superiores aos valores recomendados.

No que se referem à poluição sonora, Santos, Barros e Amorim (2013) verificaram que, em geral, os autores de livros didáticos de Física não estão preocupados com a relevância do tema no contexto da ondulatória, trazendo apenas, em sua grande maioria, uma tabela contendo fontes sonoras e seus respectivos níveis sonoros.

Moreira, Macedo e Oliveira (2013) apresentam um minicurso sobre Poluição Sonora que foi aplicado em uma turma de estudantes de Ensino Médio. Após a realização do minicurso os autores concluíram que os estudantes apreenderam os conceitos científicos e foram capazes de relacionar com situações de seu cotidiano. Os autores defendem que o tema Poluição Sonora permite ao professor associar conceitos centrais da acústica com casos relevantes do cotidiano do aluno incluindo a comunidade escolar, pois os mesmos fazem
muitos barulhos em sala de aula e utilizam constantemente de potentes aparelhos eletrônicos (equipados com fones de ouvido).

Sons acima de 75 dB já são considerados prejudiciais ao aparelho auditivo, no entanto a maioria dos equipamentos de sons portátil atinge facilmente os 120 dB, ruidos esses comparados a uma britadeira.

Para Grego (2006) além da capacidade sonora aumentada desses equipamentos, outro agravante refere-se ao tipo de fone de ouvido utilizado. Os fones de inserção no ouvido potencializam os sons, portanto são mais danosos que os tradicionais fones externos, que cobrem a orelha e amenizam o volume do som, minimizando também os ruídos externos.

Os fones de ouvido são considerados pelos médicos os mais prejudiciais porque carregam sons de até 120 decibéis diretamente para o tímpano, colaborando com o aparecimento de zumbido, antes mesmo de provocar alguma perda auditiva perceptível.
Capítulo 1

Levantando o que os alunos já sabem!
1.1 Objetivos

Caro professor e professora, esta é nossa primeira atividade. Seja bem-vindo!

O nosso principal objetivo nessa primeira atividade é trazer à tona a problemática sobre a poluição sonora, mostrando para os alunos que esse tipo de poluição não deixa resíduo material no ambiente, mas já é considerado pela ONU o terceiro maior problema ambiental do mundo. Para isso será necessário uma discussão sobre o que é a poluição sonora, quais são suas implicações para a sociedade e os problemas que ela pode trazer para cada indivíduo.

Para a realização dessa atividade é importante destacar que o aluno não é um “vaso vazio” e, portanto ele traz algum conhecimento sobre o assunto, e devido a esse fato é necessário fazer um levantamento prévio dos conhecimentos dos alunos acerca do tema.

1.2 Os conhecimentos prévios dos alunos

Segundo a teoria de David Ausubel o processo de aprendizagem acontece quando uma nova ideia se relaciona aos conhecimentos prévios do aluno. Motivado por uma situação que faça sentido, proposta pelo professor, o aluno amplia, avalia, atualiza e modifica a informação anterior, transformando-a em uma nova informação.

Dessa forma, sempre deve se considerar o conhecimento prévio que o indivíduo possui como ponto de partida para um novo conhecimento. Mesmo que esse conhecimento esteja incorreto ou incompleto, os conhecimentos prévios trazem informações sobre a forma como os alunos pensam. Ao analisá-las o docente consegue propor as situações de ensino mais adequadas para que elas atribuam significados à nova informação, possibilitando ao aluno colocar em xeque seus conhecimentos.

Esse conhecimento anterior resultará num “ponto de ancoragem” onde as novas informações irão encontrar um modo de se integrar àquilo que o indivíduo já conhece. A aprendizagem é muito mais significativa à medida que o novo conteúdo é incorporado às estruturas de conhecimento de um aluno e adquire significado para ele a partir da relação com seu conhecimento prévio.
1.3 Identificando os conhecimentos prévios dos alunos.

Em um primeiro momento devem ser levantadas as concepções prévias dos alunos sobre a poluição sonora. Para isso pode ser feita a seguinte pergunta:

| O que vocês entendem sobre poluição sonora e quais conceitos físicos vocês acreditam que estão envolvidos nesse tema? |

As respostas poderão ser anotadas na lousa e deverão servir de base para a elaboração da aula seguinte.

Após o levantamento desses conhecimentos prévios sugere-se que os alunos assistam a dois vídeos para que a discussão seja enriquecida e o aluno já comece a aprender alguns conceitos sobre a poluição sonora.

Os vídeos sugeridos envolvem, em um caso, um debate sobre a poluição sonora, apresentado no dia 30/04/2014. Neste dia comemora-se o Dia Internacional da Conscientização sobre o Ruído. A outra sugestão seria um desenho do personagem Pica Pau.

Esses vídeos estão disponíveis no youtube nos seguintes links:
Link: https://www.youtube.com/watch?v=fxU0MsdqFC0
Link: https://www.youtube.com/watch?v=y6SreSM0-zU

Acredita-se haver a necessidade de explorar o conteúdo dos vídeos junto aos estudantes. Por isso, algumas questões podem ser:

| O que acharam dos vídeos, quais problemas estão relacionados com a poluição sonora, o que poderiam ser feito para amenizar o problema pelo Estado ou Prefeitura e pela sociedade? |

19
Após essa discussão o professor poderá solicitar para os alunos produzirem um texto com uma síntese sobre os vídeos e o debate realizado na escola com a participação do professor como mediador desse debate. Esses textos deverão ser entregues ao professor e servirá como parte da avaliação do projeto.
Capítulo 2

A Física da Poluição Sonora
2.1 Objetivos

O objetivo desse capítulo é estudar os conceitos físicos envolvidos e necessários para entender a poluição sonora.

Para isso, sugere-se a abordagem dos seguintes conceitos físicos com os alunos: ondas, tipos de ondas, frequência de uma onda, comprimento de onda, velocidade de propagação de uma onda, intensidade sonora, nível relativo de intensidade, eco, ruído e tubos sonoros.

Como estratégias de ensino são sugeridas a realização de uma aula expositiva e uma demonstração experimental para mostrar que o som se propaga perturbando o meio. Após a aula e a demonstração experimental será entregue uma lista de exercícios para resolução individual.

2.2 A memorização também é útil

Após analisar as relações e as interações possíveis de ocorrer entre o professor, aluno e o conhecimento, Ausubel definiu o que chamamos de aprendizagem mecânica. Nesse tipo de aprendizagem, os conteúdos que são apresentados aos alunos não possuem nenhuma, ou possuem muito pouca relação com os seus conhecimentos prévios e ficam soltos ou ligados de uma forma fraca à estrutura mental do aluno.

Através desses conhecimentos mecânicos dos conceitos físicos que serão trabalhados nesse capítulo, é esperado que os mesmos sirvam de ancoragem para os capítulos posteriores.

2.3 O que faremos

Inicialmente, através de uma aula expositiva, deverá ser definido o conceito e os tipos de onda, deixando claro para o aluno que uma onda não transporta matéria, transportando somente energia. A velocidade de propagação de uma onda está diretamente relacionada ao seu comprimento de onda e sua frequência através de uma relação matemática.

Na primeira atividade desenvolvida foi possível observar o impacto da intensidade sonora e nesse momento a sua definição se faz necessária para a continuidade do projeto. Outros temas que deverão ser abordados na aula serão os conceitos de eco, ruído e tubos
sonoros, que serão importantes para o entendimento do funcionamento do ouvido humano, que serão abordados no próximo capítulo do projeto.

Nessa atividade deverá ser reservado um momento para a realização de um experimento que demonstrará que o som se propaga através de vibrações do meio, que no nosso caso será a vibração das moléculas de ar.

Ao final da atividade os alunos deverão resolver individualmente uma lista de exercícios.

2.4 Descrição do experimento

Para a realização do experimento deverá ser utilizados um pedaço de tubo de PVC, uma ponteira laser, uma bexiga que será utilizada como uma película e colocada muito bem esticada em uma das extremidades do tubo e um pequeno pedaço de espelho que será colado no centro da bexiga como se pode observar na figura seguinte.

Figura 2.1: Esquema parcial do arranjo experimental

![Figura 2.1: Esquema parcial do arranjo experimental](http://www.feiradeciencias.com.br/sala10/10_54.asp)

Acesso em 16/03/2017.

Com a ponteira laser apontada para o espelho será montado o arranjo experimental que pode ser observado na figura seguinte:
O experimento objetiva a observação de que, ao falar algo dentro do cano de PVC, a bexiga e o espelho vibram e consequentemente o feixe do laser seria refletido em direções distintas, formando um 'desenho' na parede (ou tela) onde é projetado. Essa vibração se deve à vibração do ar que está dentro do cano. Nesse momento pode ser feito uma analogia com o funcionamento do ouvido humano, onde a bexiga estaria se comportando como o tímpano de uma pessoa, isso é interessante para preparar os alunos para a próxima aula, onde será discutido o funcionamento do ouvido humano.

2.5 Ondas e Tipos de Ondas

Em nosso cotidiano, os movimentos ondulatórios estão presentes em diversas situações, como por exemplo, nas ondas na água, nos exames de ultrassom, em ondas numa corda e nas ondas eletromagnéticas (presentes nas telecomunicações).

Podemos definir onda da seguinte maneira:

Num sentido bastante amplo, uma onda é qualquer sinal que se transmite de um ponto a outro de um meio, com velocidade definida. Em geral, fala-se de onda quando a transmissão do sinal entre dois pontos distantes ocorre sem que haja transporte direto de matéria de um desses pontos a outro. (Nussenzveig, 2002).
Quanto à sua natureza uma onda pode ser dividida em ondas mecânicas, ondas eletromagnéticas ou ondas de matéria.

As ondas mecânicas são aquelas originadas pela deformação de uma região de um meio elástico, ou seja, para se propagarem, necessitam de um meio material. A perturbação é transmitida sucessivamente de um ponto para outro. As partículas do meio vibram próximas a seu ponto de equilíbrio sem se deslocar como um todo. O estudo das ondas mecânicas é governado pelas Leis de Newton e como exemplos de ondas mecânicas podem-se citar as ondas sonoras, as ondas sísmicas, as ondas numa mola, as ondas uma corda e as ondas produzidas na água.

As ondas eletromagnéticas são aquelas que não necessitam de um meio material para se propagarem, podendo dessa forma se propagar através do vácuo. Elas são constituídas por dois campos, um elétrico e um magnético, variáveis com o tempo e perpendiculares entre si e à direção de propagação da onda.

As ondas de matérias são governadas pela Mecânica Quântica e também conhecidas como ondas de De Broglie. A Mecânica Quântica evidencia uma dualidade na matéria. Toda a matéria apresenta características tanto ondulatórias como corpusculares comportando-se de um ou outro modo dependendo do experimento específico. De Broglie propôs então que a matéria teria um comprimento de onda associado a ela, dado pela expressão:

\[\lambda_{min} = \frac{h}{mv} \]

onde \(\lambda_{min} \) é o comprimento de onda mínimo, \(h \) é a constante de Planck cujo valor é, no SI, \(6,63 \times 10^{-34} \) J.s.; \(m \) é a massa do corpo e \(v \) a sua velocidade. De acordo com a expressão o caráter ondulatório da matéria só seria perceptível para massas extremamente pequenas.

2.6 Frequências, comprimento de onda e velocidade de uma onda.

Uma onda fica bem caracterizada quando se determina seu comprimento de onda, sua frequência e sua velocidade de propagação.

O comprimento de onda, \(\lambda \), corresponde à menor distância entre dois pontos sucessivos espaçados por um padrão de onda. Pode ser, por exemplo, a distância mínima entre duas cristas ou entre dois vales, conforme a figura seguinte:
A **Frequência** é o número de oscilações da onda, em certo intervalo de tempo. A unidade de frequência do Sistema Internacional (SI), é o hertz (Hz). A frequência de uma onda só muda quando houver alterações na fonte.

A velocidade de uma onda pode ser obtida pela relação existente entre a frequência f e o comprimento de onda através da seguinte expressão matemática:

$$ v = \lambda \cdot f $$

(2.2)

2.7 Intensidades Sonoras

A **Intensidade** é a qualidade que permite ao ouvido diferenciar os sons fracos dos sons fortes. Ao se propagar, a onda transporta energia, distribuindo-a em todas as direções. Quanto maior for a quantidade de energia que a onda transporta até nosso ouvido, maior será a intensidade do som que percebemos. Essa intensidade física I de uma onda pode ser determinada pelo quociente entre a energia ΔE, que atravessa uma superfície perpendicular à direção de propagação, e a área A da superfície na unidade de tempo.

Nussenzveig (2002) diz que a intensidade é uma propriedade do som que está relacionada com a energia de vibração da fonte que emite a onda sonora. Uma onda com maior amplitude ou maior frequência irá transmitir uma quantidade de energia maior.
2.8 Níveis Relativos de Intensidade

A resposta do ouvido humano às variações de intensidades sonoras é aproximadamente logarítmica. Para Resnick, Halliday e Krane (2003), é conveniente utilizarmos uma escala dessa natureza que é chamada de nível de intensidade sonora. Utilizando-se de logaritmos, podemos escrever o nível de intensidade sonora da seguinte maneira:

\[
NIS = 10 \log \frac{I}{I_o}
\]

No Sistema Internacional, a unidade de intensidade física será \(\text{W/m}^2 \).

A mínima intensidade física que uma onda sonora deve ter para ser audível é aproximadamente \(I=10^{-12} \text{ W/m}^2 \), o que corresponde a 0 dB. O limiar da dor (maior valor da Intensidade Sonora a partir do qual provoca dor) é de 1 \(\text{W/m}^2 \).

A seguir temos a tabela de intensidade sonora e as situações características. Nessa mesma tabela é possível notar a partir de qual situação temos um comprometimento auditivo ou um risco de perda de audição.
Figura 2.4: Tabela de intensidade sonora

<table>
<thead>
<tr>
<th>Intensidade sonora (db)</th>
<th>Situação</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>Limiar da audição humana</td>
</tr>
<tr>
<td>10-20</td>
<td>Sussurro, estúdio de radiodifusão</td>
</tr>
<tr>
<td>20-30</td>
<td>Estúdio de gravação, conversa baixa</td>
</tr>
<tr>
<td>30-40</td>
<td>Quarto silencioso</td>
</tr>
<tr>
<td>40-50</td>
<td>Escritório silencioso, geladeira</td>
</tr>
<tr>
<td>50-60</td>
<td>Voz falada, sala com televisão</td>
</tr>
<tr>
<td>60-70</td>
<td>Conversa em grupo</td>
</tr>
<tr>
<td>70-80</td>
<td>Rua congestionada</td>
</tr>
<tr>
<td>80-90</td>
<td>Aspirador de pó, liquidificador</td>
</tr>
<tr>
<td>90-100</td>
<td>Discoteca, Banda de Bossa</td>
</tr>
<tr>
<td>100-110</td>
<td>Banda de rock, buzina de carro</td>
</tr>
<tr>
<td>110-120</td>
<td>Aeroporto, motocicleta, trovão</td>
</tr>
<tr>
<td>120-130</td>
<td>Broca pneumática</td>
</tr>
<tr>
<td>130-150</td>
<td>Decolagem de avião, tiro</td>
</tr>
<tr>
<td>Acima de 150</td>
<td>Decolagem de foguete</td>
</tr>
</tbody>
</table>

Acesso em 20/06/2017.

2.9 Eco, Ruído e Tubos Sonoros.

Quando uma onda incide em um obstáculo podem ocorrer alguns fenômenos. A reflexão de uma onda ocorre quando esta incide sobre um obstáculo e retorna ao seu ponto de partida. Para o som, especificamente, a reflexão pode originar o eco e a reverberação.

O ser humano só consegue diferenciar o som emitido do som refletido quando o som refletido retorna aos seus ouvidos num intervalo de tempo igual ou maior que 0,1 segundos, nesse caso temos o eco. Caso o som refletido retorne em um tempo inferior a 0,1 segundos ocorre o fenômeno da reverberação. Dessa maneira podemos dizer que o eco ocorre quando o som refletido retorna após a extinção total do som original.
O ruído é uma oscilação acústica aperiódica que se origina da soma de várias oscilações audíveis que possui diferentes frequências.

Na figura seguinte é possível comparar o perfil de uma onda periódica com o perfil de uma onda aperiódica.

Figura 2.5: Perfil de uma onda periódica e de uma onda não periódica

Desse modo, podemos dizer que o ruído é o causador dos maiores problemas provocados pela poluição sonora e entre as implicações que o ruído pode trazer ao homem podemos destacar a lesão no timpano; destruição das células sensoriais; zumbido, enjôo, tonturas, mal estar; perda auditiva temporária, além de outras. Pode-se destacar que a poluição sonora também traz prejuízos econômicos (diminuição da produtividade, aumento na incidência de acidentes, indenizações) e sociais (perda de atenção, perda de concentração e estresse).

O ouvido humano funciona como um tubo sonoro (fechado em uma extremidade e aberto na outra), por isso é fundamental trabalhar com os alunos os conceitos de tubos sonoros.

Podemos dizer que um tubo sonoro é basicamente uma coluna de ar onde são produzidas ondas estacionárias longitudinais. Essas ondas são produzidas pela superposição de ondas de pressão que são geradas em uma extremidade com as ondas refletidas na outra extremidade.
2.10 Sugestões para a lista de exercício

Caro professor, a lista de exercícios que segue é apenas uma sugestão de atividade e não tem a intenção de restringir o trabalho docente. A única necessidade vital para a continuidade do projeto é a resolução/correção da atividade por parte do professor junto com seus alunos.

Obviamente por ser tratar de uma sugestão, ele poderá ser substituída por outros exercícios que os professores julgarem necessário desde que cubra os temas que devem ser trabalhados.

Exercícios

1. Certo animal aquático tem órgão auditivo sensível a uma faixa sonora entre 40 Hz e 250 Hz. Sendo 1450 m/s a velocidade das ondas sonoras no meio em que ela vive quais os correspondentes comprimentos de onda para as frequências máxima e mínima audíveis para esse animal?

2. Num festival de rock, os ouvintes próximos às caixas de som recebiam uma intensidade física sonora de 10 W/m² a menor intensidade física sonora audível, determine o nível sonoro do som ouvido por ele.

3. Algumas pessoas costumam dirigir com fones de ouvido ligados a aparelhos de som ou telefone celular. Como você avalia essa conduta? Consulte o Novo Código Brasileiro de Trânsito, que pode ser encontrado facilmente, inclusive em internet e analise o que propõe a legislação sobre esse assunto, isto é, sobre a interferência do som durante a condução de um veículo. Porque você acha que a legislação se posiciona dessa maneira?

4. Qual é o aumento em decibéis se a intensidade sonora for dobrada?
5. Com um decíbelímetro, mede-se o nível de ruído em um ponto do cruzamento das avenidas Ipiranga e São João (São Paulo). Uma primeira amostragem, levantada às 3 horas, revela 60 dB, enquanto outra, obtida às 18 horas, acusa 100 dB. Por quanto ficou multiplicada a intensidade sonora da primeira para a segunda amostragem.
Capítulo 3

O Funcionamento do Aparelho Auditivo
3.1 Objetivos

Nesse capítulo, sugere-se a abordagem do funcionamento do aparelho auditivo e as consequências fisiológicas causadas pela poluição sonora. Os conteúdos abordados serão a anatomia do aparelho auditivo e suas relações com os conceitos físicos.

Para isso será utilizado um vídeo do Youtube, folhas de cartolinas, o seus aparelhos de celulares, que serão utilizados para realizarem pesquisas na internet.

Os alunos serão divididos em grupos e ao final da pesquisa, cada grupo irá apresentar a sua resposta para os demais colegas da sala em forma de seminário, possibilitando uma troca de experiências e interação entre os mesmos.

3.2 Em busca da aprendizagem significativa

Para Ausubel, aprender significativamente envolve a reconfiguração das ideias já existentes na estrutura mental do estudante criando “links” que irão possibilitar o acesso a novos conhecimentos. Quanto maior o número de “links” criados, mais consolidado estará o conhecimento.

A teoria de Ausubel leva em conta a história do sujeito e enfatiza o papel fundamental do professor na proposição de situações que favoreçam a aprendizagem.

Para que a aprendizagem ocorra, o conteúdo a ser ensinado deve ter um potencial revelador que leve em conta o contexto no qual o estudante está inserido e o uso social do objeto que iremos estudar e o aluno precisa estar disposto a relacionar o conteúdo de maneira que seja consistente.

3.3 Como faremos

Conforme já foi dito, a estratégia apresentada abaixo é apenas uma possibilidade entre as diversas. Reconhece-se que diferentes estratégias podem ser utilizadas para ser chegar ao mesmo objetivo: a aprendizagem significativa dos alunos.

Como possibilidade de estratégia e levando em conta que essa atividade deverá necessitar de pelo menos 100 minutos é proposto que, inicialmente, nos primeiros 30 minutos, fossem retomados alguns conceitos trabalhados na aula anterior tais como o
conceito de onda, intensidade sonora, ruído e tubos sonoros, pois esses tópicos serão importantes para o entendimento do funcionamento do ouvido humano.

Os próximos 30 minutos de aula serão reservados para a exibição de dois vídeos que mostram o funcionamento do ouvido humano e se encontram nos seguintes links https://www.youtube.com/watch?v=61xR5D13PvU e

https://www.youtube.com/watch?v=sEsLSkN3DHk

Os 40 minutos finais serão utilizados para os alunos resolverem em grupo um dos exercícios que serão sorteados e logo após a sua resolução cada um dos grupos podem apresentar sua resposta para os demais grupos. Essas respostas deverão estar em uma folha de cartolina que deverá conter a pergunta recebida pelo grupo e a resposta dada pelo mesmo. Essas cartolinas podem ficar expostas pela sala de aula ou até mesmo pela escola, possibilitando o contato de outros estudantes com os conteúdos abordados.

3.3 Propostas de questões que podem ser utilizadas

Dentre essas perguntas, sugere-se as seguintes:

1. O aparelho auditivo recebe sinais sonoros que fazem uma membrana (tímpano) vibrar. As vibrações dessa membrana dão origem a impulsos elétricos que chegam ao cérebro causando a sensação da audição. Por que o tímpano vibra?

2. Que parte de nossa orelha vibra com as ondas sonoras? Como essa vibração é transmitida até chegar ao nervo responsável por levar os impulsos nervosos ao cérebro?

3. Qual é a função dos pelos encontrada no ouvido e da cera produzida pelos mesmos.

4. Qual é a vantagem de termos duas orelhas?
5. Na orelha externa do ser humano, o conduto auditivo tem em média 2,5 cm de comprimento por 0,66 cm² de área de seção transversal e é fechado em uma de suas extremidades pela membrana do tímpano. Sabendo que a velocidade de propagação do som no ar é de 340 m/s e que esse conduto se comporta como um tubo sonoro, determine sua frequência fundamental de ressonância.

6. O que acontece com o ouvido, após uma explosão, por exemplo? Como está explosão afeta o tímpano?

7. O que acontece com o ouvido e a audição quando a pessoa fica exposta de modo inadequado à poluição sonora?

8. Faça uma síntese sobre os efeitos na saúde provocados pela exposição a um ambiente com poluição sonora?
Capítulo 4

Medidas de intensidade sonora através do smartphone
4.1 Objetivos

Esse último momento objetiva realizar medidas de intensidade sonora utilizando aplicativos específicos através do smartphone. O aplicativo que será utilizado é o SOUND METER que pode ser baixado em seu aparelho celular. Esse aplicativo funciona como um decibelímetro.

O conteúdo que iremos abordar nessa atividade será a Intensidade sonora, medidas e análises estatísticas realizadas através do smartphone e a análise de tabelas com as comparações dos resultados encontrados nas medidas realizadas.

4.2 A aprendizagem significativa

Objetivando acelerar esse processo, Ausubel sugere a manipulação da estrutura cognitiva do aluno através do uso de organizadores prévios.

Esses instrumentos também podem servir como ativadores de subsunções que não estavam sendo usados pelo indivíduo, mas estão presentes na estrutura cognitiva. Organizadores prévios são materiais introdutórios apresentados antes do material a ser aprendido em si como, por exemplo, textos, trechos de filmes, esquemas, desenhos etc.

A principal função do organizador prévio é preencher o espaço entre aquilo que o aprendiz já conhece e o que precisa conhecer, ou seja, são “pontes cognitivas”.

Ausubel é um defensor do construtivismo, para ele o aluno é o principal agente construtor de sua aprendizagem, ou seja, prioriza a aprendizagem cognitiva, que é a integração do conteúdo aprendido numa edificação mental ordenada, já a Estrutura Cognitiva é aquela que representa todo o conteúdo armazenado por uma pessoa.
4.3 Como faremos

Será pedido para os alunos baixarem um aplicativo específico (SOUND METER) que funciona como um decibelímetro em seu smartphone e também será entregue uma lista que orientará o trabalho e tabelas que irão auxiliá-los durante as atividades.

O programa é um aplicativo gratuito que está disponível para download no Google Play e funciona em celulares e tablets com Android.

Sound Meter é um app equivalente a um decibelímetro, ou seja, um aparelho capaz de medir o número de decibéis no ambiente (pressão sonora). Ele funciona de forma muito simples, captando sons através do alto-falante do aparelho.

Como a maioria dos microfones estão calibrados para a voz humana (300 Hz - 3400 Hz, 40 - 60 dB), os valores máximos do aplicativo são limitados. Para aparelhos Motorola Milestone, o valor máximo é de 100 dB; para o aparelho Galaxy S3, o máximo é de 81 dB e os aparelhos Galaxy Note e Galaxy S 2, 91dB e 98 dB, respectivamente.

Destaca-se que as medições realizadas com o aplicativo não possuem caráter normativo, uma vez que não atendem os critérios estabelecidos pelas Normas de Higiene Ocupacional (NHO) da Fundacentro, especialmente a NHO 1, que trata especificamente de assuntos relacionados ao ruído ocupacional. Para finalidades educacionais, no entanto, essas medidas são bons indícios da exposição ao ruído por parte dos estudantes e possibilitam importantes discussões.

Na figura da página seguinte, temos uma ilustração de um aparelho de celular com o aplicativo Sound Meter em operação.

4 Nesse documento, encontra-se referências técnicas dedicadas a estabelecer critérios e procedimentos para a avaliação da exposição ocupacional ao ruído, que impliquem risco potencial de surdez ocupacional. Aplica-se aplica-se à exposição ocupacional a ruído contínuo ou intermitente e a ruído de impacto, em quaisquer situações de trabalho, contudo não está voltada para a caracterização das condições de conforto acústico.
Figura 4.1: Aplicativo *Sound Meter* em operação em um aparelho celular.

Antes de realizar as medidas é de fundamental importância realizar uma discussão para mostrar aos alunos que essas medidas não são muito precisas e que isso seria possível somente com a utilização do decibelímetro calibrado pelo INMETRO.

Também é importante que seja discutido que, provavelmente, os alunos irão encontrar valores diferentes para a intensidade sonora. Isso se deve, entre outros fatores, pelo tempo de reação de cada uma das pessoas, pela precisão diferente que cada modelo de *smartphone* possui e pelos diferentes momentos em que os alunos estão realizando as medidas.

Os alunos deverão realizar as medidas na primeira, segunda e terceira aula, na hora do intervalo, e na quarta e quinta aula. Deve ser pedido que cada aluno realize ao menos dez medidas e, para a determinação da intensidade sonora em cada um dos momentos solicitados seja utilizado os valores médios encontrados por cada um dos alunos.
4.4 Sugestões de atividade final

Novamente essa é apenas uma sugestão que irá possibilitar ao aluno realizar uma síntese dos conceitos trabalhados. Espera-se que o aluno seja capaz de conhecer elementos da poluição sonora, suas consequências para a sociedade e consiga realizar, através de comparações dos dados obtidos, uma análise sobre a situação de cada local. É sugerido que o aluno “baixe” o aplicativo conhecido como Sound Meter. Para auxiliar os alunos nessa última atividade foi desenvolvido um roteiro que deverá ser entregue aos alunos e encontra-se no anexo 1.

Nesse roteiro encontra-se toda a atividade final e algumas tabelas para auxiliá-los no desenvolvimento das atividades. As tabelas são as seguintes: Tabela de intensidade sonora pelo tipo de fonte, Tabela de nível de ruído e tempo máximo de exposição e a tabela de níveis sonoros versus seus efeitos.

4.5 Atividade final

Através do seu aparelho de celular baixe o aplicativo chamado decibelímetro e anote o nome do aplicativo escolhido por você.

Utilizando o seu decibelímetro que se encontra instalado em seu celular meça:

1. A intensidade sonora no horário da primeira aula.
2. A intensidade sonora no horário da segunda aula.
3. A intensidade sonora no horário da terceira aula.
4. A intensidade sonora durante um intervalo.
5. A intensidade sonora durante a quarta aula.
6. A intensidade sonora durante a última aula.
7. Escolha sete colegas de sua turma que realizaram as medidas e anote o valor que cada um deles encontrou para cada um dos itens da questão anterior e preencha a seguinte tabela. Não se esqueça de calcular a média dos valores encontrados por você e pelos seus colegas. Para isso utilize a calculadora do seu smartphone.
<table>
<thead>
<tr>
<th></th>
<th>Você</th>
<th>Colega 1</th>
<th>Colega 2</th>
<th>Colega 3</th>
<th>Colega 4</th>
<th>Colega 5</th>
<th>Colega 6</th>
<th>Colega 7</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ª Aula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2ª Aula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ª Aula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4ª Aula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5ª Aula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Com base na questão anterior, em qual período foi medido a maior intensidade média sonora? E a menor?

4) Quais as principais consequências que poderiam surgir no ambiente escolar que foi medida a maior intensidade sonora? E a menor? Qual o tempo máximo de exposição que o ser humano pode se expor para essas duas situações? Para responder utilize as tabelas fornecidas e os dados das questões 2.

5) Faça uma auto avaliação do projeto desenvolvido destacando o que você mais gostou e o que você menos gostou e o que achou da metodologia adotada na realização dessas atividades indicando o que você mais gostou de aprender.
Bibliografia:

Anexo 1

Roteiro e tabelas da Atividade Final

Caro estudante, chegamos a última atividade do nosso projeto sobre o estudo da poluição sonora.

Durante esse projeto, estudamos alguns conceitos físicos necessários para entendermos melhor a poluição sonora e os problemas ocasionados por esse tipo de poluição.

Agora iremos fazer algumas medidas da intensidade sonora em alguns ambientes frequentados por vocês. Para isso será utilizado o aplicativo instalado em seu celular, transformando este num decibelímetro. Estas medidas não são calibradas, e em um caso mais formal, o decibelímetro deve ser calibrado pelo Inmetro. O decibelímetro é o instrumento que tem por finalidade medir os níveis de intensidade sonora.

Antes disso atente-se aos seguintes tópicos que foram abordados no projeto:

Acústica é a parte da Física que estuda as oscilações e ondas cujas frequências estão compreendidas entre 20 Hz e 20.000 Hz.

Decibel (dB) é a escala utilizada na medida da intensidade do som. Ela corresponde à décima parte do bel, e é obtida através das equações abaixo:

A Fórmula para o Nível de Intensidade Sonora é dado por:

\[NIS = 10 \log \frac{I}{I_o} \]

\[NPS = 10 \log \frac{P}{P_o} \]

Onde:

\(NIS \) - Intensidade do som, medida em decibel
\(NPS \) - Intensidade do som, medida em decibel
\(I \) - intensidade do som da fonte
\(P \) - Potência do som da fonte
\(I_o \) - Intensidade inicial de referência.
\(P_o \) - Potência inicial de referência.

Tabela de Intensidade sonora pelo tipo de fonte

<table>
<thead>
<tr>
<th>Intensidade em dB</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>Som dentro de um tornado; bomba nuclear a 5 m (estimativa)</td>
</tr>
<tr>
<td>180</td>
<td>Foguete à 30 m; canto da baleia azul, à 1 m.</td>
</tr>
<tr>
<td>150</td>
<td>Avião a jato, à 30 m</td>
</tr>
<tr>
<td>140</td>
<td>Tiro de rifle, à 1 m</td>
</tr>
<tr>
<td>130</td>
<td>Limite da dor. Buzina de trem, à 1 m</td>
</tr>
<tr>
<td>120</td>
<td>Concerto de rock, jato decolando, à 100 m</td>
</tr>
<tr>
<td>110</td>
<td>Motocicleta em alta velocidade, à 5 m</td>
</tr>
<tr>
<td>100</td>
<td>Furadeira pneumática, à 2 m</td>
</tr>
<tr>
<td>90</td>
<td>Caminhão, à 1 m</td>
</tr>
<tr>
<td>85</td>
<td>Limite de Ruído permitido pela NR-15 (8 horas)</td>
</tr>
<tr>
<td>80</td>
<td>Aspirador de pó grande, à 1 m. Tráfego pesado</td>
</tr>
<tr>
<td>70</td>
<td>Barulho de tráfego, à 5 m</td>
</tr>
<tr>
<td>60</td>
<td>Som no interior de escritório ou restaurante</td>
</tr>
<tr>
<td>50</td>
<td>Restaurante silencioso</td>
</tr>
<tr>
<td>40</td>
<td>Área residencial, à noite</td>
</tr>
<tr>
<td>30</td>
<td>Interior de cinema, sem barulho</td>
</tr>
<tr>
<td>10</td>
<td>Respiração humana, à 3 m</td>
</tr>
<tr>
<td>0</td>
<td>Limite da audibilidade humana</td>
</tr>
</tbody>
</table>

Acesso em 20/06/2017.
TABELA COM OS LIMITES DE TOLERÂNCIA PARA RUÍDO CONTÍNUO OU INTERMITENTE

<table>
<thead>
<tr>
<th>NÍVEL DE RUÍDO DB (A)</th>
<th>MÁXIMA EXPOSIÇÃO DIÁRIA PERMISSÍVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>8 horas</td>
</tr>
<tr>
<td>86</td>
<td>7 horas</td>
</tr>
<tr>
<td>87</td>
<td>6 horas</td>
</tr>
<tr>
<td>88</td>
<td>5 horas</td>
</tr>
<tr>
<td>89</td>
<td>4 horas e 30 minutos</td>
</tr>
<tr>
<td>90</td>
<td>4 horas</td>
</tr>
<tr>
<td>91</td>
<td>3 horas e 30 minutos</td>
</tr>
<tr>
<td>92</td>
<td>3 horas</td>
</tr>
<tr>
<td>93</td>
<td>2 horas e 40 minutos</td>
</tr>
<tr>
<td>94</td>
<td>2 horas e 15 minutos</td>
</tr>
<tr>
<td>95</td>
<td>2 horas</td>
</tr>
<tr>
<td>96</td>
<td>1 hora e 45 minutos</td>
</tr>
<tr>
<td>98</td>
<td>1 hora e 15 minutos</td>
</tr>
<tr>
<td>100</td>
<td>1 hora</td>
</tr>
<tr>
<td>102</td>
<td>45 minutos</td>
</tr>
<tr>
<td>104</td>
<td>35 minutos</td>
</tr>
<tr>
<td>105</td>
<td>30 minutos</td>
</tr>
<tr>
<td>106</td>
<td>25 minutos</td>
</tr>
<tr>
<td>108</td>
<td>20 minutos</td>
</tr>
<tr>
<td>110</td>
<td>15 minutos</td>
</tr>
<tr>
<td>112</td>
<td>10 minutos</td>
</tr>
<tr>
<td>114</td>
<td>8 minutos</td>
</tr>
<tr>
<td>115</td>
<td>7 minutos</td>
</tr>
</tbody>
</table>

Acesso em 20/06/2017.
Sabemos que a poluição sonora traz efeitos para o cidadão de um modo geral, como podemos notar na tabela abaixo:

<table>
<thead>
<tr>
<th>Nível sonoro</th>
<th>Efeitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥30 dB</td>
<td>reações psíquicas</td>
</tr>
<tr>
<td>≥65 dB</td>
<td>reações fisiológicas</td>
</tr>
<tr>
<td>≥85 dB</td>
<td>trauma auditivo</td>
</tr>
<tr>
<td>≥120 dB</td>
<td>lesões irreversíveis no sistema auditivo</td>
</tr>
</tbody>
</table>

Acesso em 20/06/2017.